

cyberCommons Framework!

The cyberCommons Framework is a loosely coupled service-orientated reference architecture for distributed computing workflows. The framework is composed of a series of Docker contained services combined by a Python RESTful API. These containers in the reference architecture use MongoDB, RabbitMQ, Django RESTful and Celery to build a loosely coupled and horizontally scalable software stack. This reference stack can be used to manage data, catalog metadata, and register computational worker nodes with defined tasks. Computations can scale across a series of worker nodes on bare-metal or virtualized environments. The framework provides a flexible, accessible interface for distributed processing and data management from multiple environments including command-line, programming languages, and web and mobile applications.

[image: _images/cybercommons.png]
The cyberCommons Framework currently deployed across a wide variety of environments.

	University of Colorado Libraries [https://www.colorado.edu/libraries/] at
the University of Colorado Boulder.

	University of Oklahoma Libraries [https://libraries.ou.edu/] at
the University of Oklahoma.

	US Congressional Hearings Search Engine [https://cc.lib.ou.edu/hearings/]

	Latin Search Engine [https://cc.lib.ou.edu/latin-portal/]

	Northern Arizona University EcoPAD [https://www2.nau.edu/luo-lab/?ecopad] is an
ecological platform for data assimilation and forecasting in ecology.

	The Oklahoma Biological Survey [http://www.biosurvey.ou.edu/]

	The Earth Observation Modeling facility [http://eomf.ou.edu/]

	The South Central Climate Sciences Center [http://southcentralclimate.org/]

	The Oklahoma Water Survey [http://www.ou.edu/okh2o]

Table of Contents

Contents:

Installation/Configuration

	1. Installation

	2. System Configuration

	3. Install Remote Workers

REST API

	RESTful API

	Users and Persmissions

	Help and Issue Reporting

	Contributors

1. Installation

The Cybercommons framework is a Django Rest Framework API. The API leverages MongoDB to provide a Catalog and Data Store for storing metadata and data within a JSON document database. The API also includes Celery which is an asynchronous task queue/jobs based on distributed message passing.

1.1. Requirements

	Docker

	Docker Compose

	pip install docker-compose

	GNU Make or equivalent

1.2. Installation

	Clone Repository

git clone https://github.com/cybercommons/cybercommons.git

	Edit values within dc_config/cybercom_config.env

	Copy secrets_template.env into secrets.env under the same folder and add required credentials into it.

	Initialize database and generate internal SSL certs

make init

	Build and Deploy on local system.

make build
make superuser
make run

	Make Django’s static content available. It only needs to be run once or after changing versions of Django.

make collectstatic

	API running http://localhost

	Admin credentials set from above make superuser

	Shutdown cybercommons

make stop

1.3. cybercommons Installation on servers with a valid domain name.

	Edit values within dc_config/cybercom_config.env[NGINX_HOST,NOTIFY_EMAIL,NGINX_TEMPLATE(These values must be set).

	Copy secrets_template.env into secrets.env under the same folder and add required credentials into it.

	Initialize database and generate internal SSL certs

make init

	Initialize and Get TLS certificates from LetsEncrypt

make init_certbot

	Build and Deploy on local system.

make build
make superuser
make run

	Make Django’s static content available. This only needs to be ran once or after changing versions of Django.

make collectstatic

	API running https://{domain-name-of-server}

	Admin credentials set from above make superuser

	Shutdown cybercommons

make stop

1.4. TODO

	Integration with Kubernetes

2. System Configuration

2.1. Configuration Files

The majority of configuration settings are stored in the following files:

	dc_config/cybercom_config.env

	Used for general application settings and container versions

	Configure Nginx to use Let’s Encrypt

	Configure MongoDB database name and Docker volume prefix

	Set the ALLOWED_HOSTS setting - this must be updated if running on a publicly accessible server!

	dc_config/secrets.env (This should be copied from dc_config/secrets_template.env as a starting point)

	!!! Once created, you should change the default credentials as they are not secure !!!

	Used to store sensitive variables that should not be tracked in version control

	Set MongoDB and RabbitMQ credentials

	Configure email server connection

	SSL configration

	Configure Let’s Encrypt reminder notification email address (NOTIFY_EMAIL)

	requirements.txt

	Python requirements for the API / Django

	dc_config/images/celery/requirements.txt

	Python requirements for the dockerized Celery container

It is recommended to copy dc_config/secrets_template.env to dc_config/secrets.env as a starting point. Once created, you should change the default credentials as they are not secure!

2.2. Generating SSL Keys and Where They are Stored

Rabbitmq and MongoDB are configured to use SSL certificates to secure their communications. By default, during the setup of cyberCommons, these certificates are configured to be valid for 365 days. This default can be changed by editing the CA_EXPIRE value in the dc_config/secrets.env file. Once the certificates expire, they will need to be regenerated by running shell make initssl

2.2.1. Generating SSL certificates

Self-signed certificates are automatically generated on first run for RabbitMQ and MongoDB. Generation of self-signed certificates for NGINX is currently not implemented.
LetsEncrypt - refer to the LetsEncrypt section of the installation instructions.

2.2.2. Renewing SSL Certificates

	Self-signed certificates can be updated by running the following command from the cyberCommons root directory:

$ make initssl

All remote Celery workers will need the new SSL client certificates to resume communications. See the section below on where these certificates are stored

	LetsEncrypt certificates can be renewed by running the following from the cyberCommons root directory:

$ make renew_certbot

Follow LetsEncrypt’s prompts

2.2.3. SSL Certificate Locations

	Self-signed locations:

	MongoDB

	dc_config/ssl/backend/client/mongodb.pem

	dc_config/ssl/backend/server/mongodb.pem

	dc_config/ssl/testca/cacert.pem

	RabbitMQ

	dc_config/ssl/backend/client/key.pem

	dc_config/ssl/backend/client/cert.pem

	dc_config/ssl/backend/server/key.pem

	dc_config/ssl/backend/server/cert.pem

	dc_config/ssl/testca/cacert.pem

	LetsEncrypt location:

	NGINX

	dc_config/ssl/nginx/letcencrypt/etc/live/*

2.3. Configure Email Backend

	Populate the Email Configuration section in dc_config/secrets.env. The following is an example using gmail.

EMAIL_BACKEND=django.core.mail.backends.smtp.EmailBackend
EMAIL_HOST=smtp.gmail.com
EMAIL_PORT=587
EMAIL_HOST_USER=username@gmail.com
EMAIL_HOST_PASSWORD=password
EMAIL_USE_TLS=True

2.3.1. Turn On Debug Mode for RESTful API

The Debug mode is turned off by default. If you need debug messages

	Set DEBUG=True in dc_config/cybercom_config.py

	Add host(s) to ALLOWED_HOSTS list if needed. See Django’s documentation on the ALLOWED_HOSTS [https://docs.djangoproject.com/en/3.2/ref/settings/#allowed-hosts] setting for more detail.

3. Install Remote Workers

cyberCommons can scale horizontally by allowing remote workers to take on tasks and execute them on remote systems. The following describes how to setup a remote Celery [http://www.celeryproject.org/] worker for use with cyberCommons. Celery is focused on real-time operation, but supports scheduling as well.

The execution units, called tasks, are executed concurrently on a single or more worker servers using multiprocessing, Eventlet, or gevent. Tasks can execute asynchronously (in the background) or synchronously (wait until ready).

3.1. Requirements

	PIP - Install [https://packaging.python.org/install_requirements_linux/#installing-pip-setuptools-wheel-with-linux-package-managers]

	Copies of client certificates and credentials to communicate with central cyberCommons server:

	MongoDB

	dc_config/ssl/backend/client/mongodb.pem

	dc_config/ssl/testca/cacert.pem

	RabbitMQ

	dc_config/ssl/backend/client/key.pem

	dc_config/ssl/backend/client/cert.pem

	dc_config/ssl/testca/cacert.pem

	RabbitMQ and MongoDB ports are open by default:

	RabbitMQ port 5671

	MongoDB port 27017

3.2. Install Celery

	Create virtual environment and activate

python -m venv virtpy
source virtpy/bin/activate

	Install Celery

(virtpy) $ pip install Celery

3.3. Configuration

3.3.1. Get Config Files and Certificates

	Download example celeryconfig.py and requirements.txt

wget https://raw.githubusercontent.com/cybercommons/cybercommons/master/docs/pages/files/celeryconfig.py

	Create SSL directory and copy cyberCommon’s client certificates

mkdir ssl
cp mongodb.pem ssl/
cp key.pem ssl/
cp cert.pem ssl/
cp cacert.pem ssl/

	Configure celeryconfig.py to point to client certificates and use corresponding credentials (values in this example between “<” and “>” need to be updated to match your cyberCommon’s configuration. Do not include the “<” and “>” characters.)

broker_url = 'amqp://<username>:<password>@<broker_host>:<broker_port>/<broker_vhost>'
broker_use_ssl = {
 'keyfile': 'ssl/key.pem',
 'certfile': 'ssl/cert.pem',
 'ca_certs': 'ssl/cacert.pem',
 'cert_reqs': ssl.CERT_REQUIRED
}

result_backend = "mongodb://<username>:<password>@<mongo_host>:<mongo_port>/?ssl=true&ssl_ca_certs=ssl/cacert.pem>&ssl_certfile=mongodb.pem>"

mongodb_backend_settings = {
 "database": "<application_short_name>",
 "taskmeta_collection": "tombstone"
}

3.3.2. Configure Tasks

	Update requirements.txt to include desired libraries and task handlers.

	Update celeryconfig.py to import task handlers that have been included in requirements file.

imports = ("cybercomq", "name_of_additional_task_handler_library",)

	Install requirements

(virtpy) $ pip install -r requirements.txt

3.3.3. Launch Celery worker

	Run in foreground. See Celery Worker Documentation [https://docs.celeryproject.org/en/stable/reference/cli.html#celery-worker] for more information.

celery worker -Q remote -l INFO -n dev-hostname

RESTful API

Catalog and Data Store

The Catalog and Data Store are using the same logic and syntax for access and query language. The database which holds the information is MongoDB. MongoDB is a schemaless document noSQL database. The query language that the API deploys is the json representation of MongoDB.

API Return Data Structure

The API returns data in a consistent structure.

	count: number if result records returned

	meta: page, page_size, pages

	next and previous: urls to page through data

	results: list of records return from API

 {
 "count": 1,
 "meta": {
 "page": 1,
 "page_size": 50,
 "pages": 1
 },
 "next": null,
 "previous": null,
 "results": [

]
 }

URL Parameters

page_size:

The page_size returns the available records up to page_size. If more records exist, the next url value will be deployed.

 ?page_size=100
 ?page_size=0

If page_size=0 API will return all records.

page:

The page variable will move to the page requested. If the page does not exist the last page will be shown.

format:

	api (Default) - Return type is HTML format

	json - Return type is JSON format

	jsonp - Return type is JSONP format

	xml - Return type is xml format

 ?format=json

query:

The query url parameter is a JSON format query language. Please see below

Query Language

The API query language is based from the MongoDB pyhton query [https://docs.mongodb.com/manual/tutorial/query-documents/#python] syntax.

Create Database and Collections

Create Database

 View: /api/data_store/data/ HTTP Request: Post
 Data: {"database":"mydata"} Format: JSON

Delete Database

 View: /api/data_store/data/ HTTP Request: Post
 Data: {"action":"delete","database":"mydata"} Format: JSON

Create Collection

 View: /api/data_store/data/mydata HTTP Request: Post
 Data: {"collection":"mycollection"} Format: JSON

Delete Collection

 View: /api/data_store/data/mydata HTTP Request: Post
 Data: {"action":"delete","collection":"mycollection"} Format: JSON

Filter Query

The following examples are on the collection view.

Filter Query

 ?query={"filter":{"tag":"content"}}

 ?query={"filter":{"tag":"content","tag2":"content"}}

 # Return fields (projection: 0,1)

 ?query={"filter":{"tag":"content","tag2":"content"},"projection":{"tag":0}

Distinct Query

 ?distinct=tag,tag2
 # Include query parameter
 ?distinct=tag&query={"filter":{"department":"Informatics"}}

MongoDb Aggregation

Please refer to MongoDB Documentation [https://docs.mongodb.com/manual/core/aggregation-pipeline/]

 ?aggregate=[{"$match":{"status": "urgent"}},
 {"$group":{"_id":"$productName","sumQuantity":{"$sum":"$quantity"}}}]

Task Execution (celery)

The Celery Distributed Task Queue is integrated throught the RESTful API.

List of Available Tasks and Task History

 URL: /api/queue/
 Task History: /api/queue/usertasks/

Task Submission

 Example:
 URL /api/queue/run/cybercomq.tasks.tasks.add/
 Docstring: Very import to give users the description of task.
 Curl Example: Comand-line example with API token

Task HTML POST Data Requirement

 {
 "function": "cybercomq.tasks.tasks.add",
 "queue": "celery",
 "args": [],
 "kwargs": {},
 "tags": []
 }

function: task name
queue: which queue to route the task
args: [] List of argument
kwargs: {} Keyword arguments
tags: [] list of tags that will identify task run

Curl Command - Command-line Scripting

 curl -X POST --data-ascii '{"function":"cybercomq.tasks.tasks.add","queue":"celery","args":[],"kwargs":{ },"tags": []}' http://localhost/api/queue/run/cybercomq.tasks.tasks.add/.json -H Content-Type:application/json -H 'Authorization: Token < authorized-token > '

Python Script to Execute Script

 import requests,json

 headers ={'Content-Type':'application/json',"Authorization":"Token < authorized token >"}
 data = {"function":"cybercomq.tasks.tasks.add","queue":"celery","args":[2,2],"kwargs":{},"tags":["add"]}
 req=requests.post("http://localhost/api/queue/run/cybercomq.tasks.tasks.add/.json",data=json.dumps(data),headers=headers)
 print(req.text)

Javascript JQuery $.postJSON

 //postJSON is custom call for post to cybercommons api
 $.postJSON = function(url, data, callback,fail) {
 return jQuery.ajax({
 'type': 'POST',
 'url': url,
 'contentType': 'application/json',
 'data': JSON.stringify(data),
 'dataType': 'json',
 'success': callback,
 'error':fail,
 'beforeSend':function(xhr, settings){
 xhr.setRequestHeader("X-CSRFToken", getCookie('csrftoken'));
 }
 });
 }

Users and Persmissions

Django Admin Site

The Django admin comes with user and permissions functionality.

 URL - /api/admin

[image: Django Admin]

User Creation

The users are stored locally and passwords are stored within the database. Django comes with many different modules to extend the authentication functionality.

 URL - /api/admin/auth/user/

[image: User Creation]

Permissions

The cyberCommons RESTful api provides permissions and groups:

	Data Catalog

	Catalog Creation

	Catalog Admin

	Create Catalog Collections

	Collection Permissions

	Add Permissions

	Update Permission

	Safe Methods (Read) Permissions

	Data Store

	Catalog Creation

	Data Store Admin

	Create Database and Collections

	Database and Collection Permissions

	Add Permissions

	Update Permission

	Safe Methods (Read) Permissions

[image: User Permission]

Help and Issue Reporting

Help

This documentation serves as the primary resource for help on the cyberCommons Framework.

Issue Reporting

	cyberCommons Framework [https://github.com/cybercommons/cybercommons/issues]

Contributors

The original cyberCommons framework was funded by the National Science Foundation(NSF) through the Oklahoma EPSCoR Track-II RII (EPS-0919466 [https://www.nsf.gov/awardsearch/showAward?AWD_ID=0919443] grant. The grant focused on creating a cyberCommons, a powerful, integrated cyber environment for knowledge discovery and education across complex environmental phenomena. Specifically, the cyberCommons will integrate two frameworks— the science framework of data, models, analytics and narratives, and the cyberinfrastructure framework of hardware, software, collaboration environment and integration environment. The current cyberCommons platform has evolved and is used in production for research and automating workflows including:

	University of Colorado Libraries [https://www.colorado.edu/libraries/]

	University of Oklahoma Libraries [https://libraries.ou.edu/]

	Northern Arizona University [https://www2.nau.edu/luo-lab/?ecopad]

	The Earth Observation Modeling facility [http://eomf.ou.edu/]

	The South Central Climate Sciences Center [http://southcentralclimate.org/]

Informatics contributions

Original cyberCommons Team

* Cremeans, Brian
* Duckles, Jonah
* Stacy, Mark

Current cyberCommons Team

* Mark Stacy, Software Architect, University of Colorado Libraries
* Tyler Pearson, Director of Informatics, University of Okalahoma Libraries

Index

 nav.xhtml

 Table of Contents

 		
 cyberCommons Framework!

 		
 Installation

 		
 Requirements

 		
 Installation

 		
 cybercommons Installation on servers with a valid domain name.

 		
 TODO

 		
 System Configuration

 		
 Configuration Files

 		
 Generating SSL Keys and Where They are Stored

 		
 Generating SSL certificates

 		
 Renewing SSL Certificates

 		
 SSL Certificate Locations

 		
 Configure Email Backend

 		
 Turn On Debug Mode for RESTful API

 		
 Install Remote Workers

 		
 Requirements

 		
 Install Celery

 		
 Configuration

 		
 Get Config Files and Certificates

 		
 Configure Tasks

 		
 Launch Celery worker

 		
 RESTful API

 		
 Catalog and Data Store

 		
 API Return Data Structure

 		
 URL Parameters

 		
 Task Execution (celery)

 		
 Users and Persmissions

 		
 Django Admin Site

 		
 User Creation

 		
 Permissions

 		
 Help and Issue Reporting

 		
 Help

 		
 Issue Reporting

 		
 Contributors

 		
 Informatics contributions

 		
 Original cyberCommons Team

 		
 Current cyberCommons Team

_images/cybercommons.png
django REST framework

RabbitMQ Message Message
Task Worker Task Worker Data Catalog. Data Store
Celery Queue . Celery Queue Metadata Data

Task Worker Task Worker
Celery Queue . Celery Queue

Task Worker Task Worker Schemaless Document DB
Celery Queue Celery Queue

NoSQL MongoDB

Horizontally Scalable Horizontally Scalable

_images/djangoadmin.png
& C 0 | ® localhost/api/admin/

Django adm]
ite administration
| Authentication and Authorizaton |

Groups #Add o Change
Permissions #Add o Change
Users #Add o Change

S ——
Tokens. #Add o Change

_static/plus.png

_images/adduser.png
ango administration

Home > Authentication and Authorization > Users
Select user to change

Ql Search
Action: 60| 0.0f 1 selected

() Username ~ Email address First name
O admin Admin
1 user

Welcome, Admin. View site /

Last name
Admin

Staff status

hange password / Log out

By staff status
Al
Yes
No

By superuser status
All
Yes

_static/file.png

_images/permission.png
@ Active

Designates whether

user should be treated as active. Unselect this instead of deleting accounts.

@ Staff status

Designates whether the user can log into this admin site.

@ Superuser status.

Designates that this user has all permissions without explicitly assigning them.

Groups: +
Available groups © Chosen groups -

Q Filter

o0

Choose all & O Remove al

The groups this user belongs to. A user will get all permissions granted to each of their groups. Hold down "Contre
select more than one.

User *
ermissions: Specific permissions for this user. Hold down "Control", or "Command” on a Mac, to select more than one.
Available user permissions © Chosen user permissions -

Q Filter

admin | log entry | Can add log entry
admin | log entry | Can change log entry
admin | log entry | Can delete log entry
auth | group | Can add group

auth | group | Can change group

auth | group | Can delete group

auth | permission | Can add permission
auth | permission | Can change permission
auth | permission | Can delete permission
auth | user | Can add user

auth | user | Can change user

auth | ucer | Can delete u<er

o0

_static/minus.png

